SOSCON Unity ML-Agents

Development of AI Agents Using Unity ML-Agents

Hanyang University | Automotive Engineering | Kyushik Min 20191017

SAMSUNG OPEN SOURCE CONFERENCE 2019

Contents

Self Introduction01Reinforcement Learning02Unity ML-Agents03Development Case using Unity ML-Agents04

SOSCON2019

SAMSUNG OPEN SOURCE CONFERENCE 2019

Kyushik Min

Ph.D. Candidate of Automotive Department in Hanyang University

- Research Topics
 - Self Driving Car, Driver Assistance System, Artificial Intelligence, Reinforcement Learning
- Career
 - Unity Masters
 - Manager of Reinforcement Learning Korea (Facebook Page)
 - Creative Application Award Winner at ML-Agents Challenge
 - Doing Research and writing papers using ML-Agents
 - Conducting numerous seminars and lectures on ML-Agents

Reinforcement Learning

SOSCON2019

SAMSUNG OPEN SOURCE CONFERENCE 2019

Machine Learning

Machine Learning

- Research areas that give computers the ability to learn without explicit programming

- Types of Machine Learning
 - Supervised Learning, Unsupervised Learning, Reinforcement Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Reinforcement Learning

- Learning by Reward
- Perform various experiences through trial and error
- Learn to choose actions in a way that maximizes rewards

Reinforcement Learning

• Training Process of Reinforcement Learning

Environment

AlphaGo (2016)

AlphaGo Zero (2017)

OpenAI Five (2018)

AlphaStar (2019)

Locomotion

DeepMimic

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

Xue Bin Peng¹, Pieter Abbeel¹, Sergey Levine¹, Michiel van de Panne²

¹ University of California Berkeley

² University of British Columbia

Reinforcement Learning Korea

https://www.facebook.com/groups/ReinforcementLearningKR/

Reinforcement Learning Korea

I reinforce	ement-learni	ng-kr / how_to_s		⊙ w	atch 👻 18	★ Unstar	96	😵 Fork	13		
<> Code	() Issues 0	្រា Pull requests 0	Projects 0	💷 Wiki	C Security	Insights	🔅 Settings				
강화학습을	공부하고 싶은	은 분들을 위한 글							Edit		
Manage topics											
	🕝 8 commits		2 branches		\diamond	0 releases		22 2 (contribut	ors	
Branch: master 🕶 New pull request						Create new file	Upload files	Find File	Clone	or downlo	ad 👻
👖 dongmi	inlee94 Update REA				Latest cor	nmit e8ee	≥977 on 2	9 Jul			
	E README.md Update README.md								2	months	ago

https://github.com/reinforcement-learning-kr/how_to_study_rl

Unity ML-Agents

SOSCON2019

SAMSUNG OPEN SOURCE CONFERENCE 2019

Reinforcement Learning

• Training Process of Reinforcement Learning

Action (a)

Jump, forward, backward, run, …

Environment

Reinforcement Learning

Agent

Deep Q Network Rainbow DQN Deep Deterministic Policy Gradient Trust Region Policy Optimization Proximal Policy Optimization

Environment

OpenAI GYM Atari Super Mario Mujoco Malmo

SOSCON2019

If you are using a created environment...

Difficulties modifying the environment

May not have the required environment

SOSCON2019

Need to create RL environment

Concerns of people who study RL

Create an environment for testing RL

Unity

- Game engine that provides the development environment for 2D & 3D video games
- Also applied to various industries such as 3D animation, architectural visualization, VR
- Over 45% of the game engine market, over 5 million registered developers

Unity

SOSCON2019

Agent and Environment

SOSCON2019

Agent and Environment

SOSCON2019

Unity ML-Agents

Released 2017.09.19 -> Beta 0.10.0

- API to simplify configuration for RL in Unity environments
- Communication between Python and Unity environment (State, Action, Reward)
- Consists of Agent, Brain, Academy
 - Agent: Code for the Agent, configuration for Obs, action, reward
 - Brain: Determine how to control agents (Player, Heuristic, Learning)
 - Academy: Integrated management of brain, various settings for environment

Unity ML-Agents

: Single Agent

: Adversarial Agents

S SB

: Imitation Learning

SOSCON2019

Development Case using Unity ML-Agents

SOSCON2019

SAMSUNG OPEN SOURCE CONFERENCE 2019

Machine Learning Camp Jeju 2017

MACH[®]NE **LE**^ARNING **C**^{[[]}MPJEJU[[] 2917

글·카카오 등 '머신러닝 원"	캠프 제주	2017′	공동	개최"Al	연구	활	성호	ŀ
I즈 김범수 기자					\Box		6	1

'머신러닝 캠프 제주 2017' 인공지능기술 대중화 캠프 개최

Project Proposal

- Various Advanced Driver Assistance Systems (ADAS) are already commercialized, including lane keeping and lane changes.
- Autonomous driving is possible with a combination of ADAS
- The challenge is to determine which ADAS controls the vehicle in every state

Project Proposal

- In case of RL, prediction of action selection is hard
- Applying collision avoidance systems such as AEB and lane change prevention
- Use sensors such as cameras, LIDAR, and RADAR that are used in autonomous vehicles
- But there is no simulator that satisfies the desired condition

Collision Avoidance Systems

Camera, LIDAR, RADAR

SOSCON2019

Simulator

SOSCON2019

Simulator (Observations)

Simulator (Actions)

(5)

Simulator (Reward)

$r_{v,max}$	1
v_{max}	80km/h
v_{min}	40km/h
$r_{collision}$	-10
r_{lc}	-0.25
$r_{overtake}$	0.5

$$r_{v}(v) = \frac{v - v_{min}}{v_{max} - v_{min}} r_{v,max}$$
(1)

$$r_{col} = \begin{cases} -r_{collision} & \text{if host vehicle colides} \\ 0 & \text{otherwise} \end{cases}$$
(2)

$$r_{lc} = \begin{cases} -r_{lanechange} & \text{if host vehicle changes lane} \\ 0 & \text{otherwise} \end{cases}$$
(3)

$$r_{overtake} = \begin{cases} r_{overtake} & \text{if host vehicle overtake other vehicle} \\ 0 & \text{otherwise} \end{cases}$$
(4)

$$r_{tot}(v) = r_{v}(v) + r_{col} + r_{lc} + r_{overtake} \end{cases}$$
(5)

Network Architecture

Communication between Python & Unity

SOSCON2019

Result

Communication between Python & Unity

- Implemented using Socket communication, but there are many unstable parts and bugs
 - Problem with communication interruption
 - Lots of coding is required for small changes in the environment
 - Synchronization Problems Between Communications
 - Issue with speed differences between Unity and Python code
- Trying to solve problems for about 1~2 months
 - About 70% of all problems were solved
 - It was scheduled for release on Github

ML-Agents released (2017.09.19)

ML-Agents Challenge

ML-Agents Challenge

- Apply ML-Agents to the environment created in Jeju Camp
- Made with a simpler environment (static obstacles)

ML-Agents Challenge

ML-Agents Challenge

2018 IEEE IV Conference

Overtake

Average Overtake / 5 Episodes of DRL algorithms

Multi Input

- 10

 Image Sensor

10

45

賣 30

E 훊 25 6 21

ď

2

4

6

step

of Average Overtaking

2018 IEEE IV Conference

Camera Only	71.0776	15	35.2667
LIDAR Only	71.3758	14.2667	38.0667
Multi-Input	75.0212	19.4	44.8

2018 IEEE IV Conference

2018 IEEE IV Conference

2018 IEEE Intelligent Vehicles Symposium (IV) Changshu, Suzhou, China, June 26-30, 2018

Deep Q Learning Based High Level Driving Policy Determination

Kyushik Min, Hayoung Kim and Kunsoo Huh, Member, IEEE

IEEE T-IV

- Driving situation is stochastic environment
- Even the same action in the same state can have different results!
- General RL: predicting the value as one scalar value

IEEE T-IV

- Distributional RL
 - Predict the value which agent will receive in the future as a probability distribution
 - Better performance in stochastic environments

IEEE T-IV

- Simulation Environment
 - Add fog and sensor noise to verify the robustness of Distributional RL
 - Sensor noise equation: $d=d+\alpha * Random.Range(-d, d)$ (α : noise weight)
 - Add sensor noise and fog only when performing post-training algorithm validation

IEEE T-IV

- Network Architecture
 - Use QR-DQN, one of the Distributional RL algorithms

TABLE II Hyperparameters of Driving Policy Network									
Data	Туре	Actuation	Hyperparameters						
	Convolution	ReLU	patch size = (8x8) stride = 4 # of filters = 32						
Camera data	Convolution	ReLU	patch size = $(4x4)$ stride = 2 # of filters = 64						
	Convolution	ReLU	patch size = (3x3) stride = 1 # of filters = 64						
Sensor data	LSTM	-	time steps = 4 # of cell states = 256						
Concatenated data	Fully Connected	ReLU	# of units = 512						

IEEE T-IV

- Result
 - Fast average speed, minimum unnecessary lane changes

IEEE T-IV

IEEE T-IV

416

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 4, NO. 3, SEPTEMBER 2019

Deep Distributional Reinforcement Learning Based High-Level Driving Policy Determination

Kyushik Min^(D), Hayoung Kim^(D), and Kunsoo Huh^(D), *Member*, *IEEE*

IEEE Transactions on Intelligent Vehicles. Vol. 4, No. 3, Sep 2019

Github

- Upload the following items to Github!
 - RL Algorithms
 - Built Unity Environment
 - Unity Files

MLJejuCamp2017 / DRL_based_SelfDrivingCarControl						O Unwat	tch ▼ 19	🖈 Unstar	200	¥ Fork	63
♦ Code ① Issues 6 ⑦ Pull requests 0 Projects 0 Wiki Security Insights Settings											
Deep Reinforcement Learning (DQN) based Self Driving Car Control with Vehicle Simulator									Edit		

https://github.com/MLJejuCamp2017/DRL_based_SelfDrivingCarControl

2019 IEEE ISPACS

- Multi-Agent Traffic Control Environment
 - Difficult to change lanes to desired lane in complex road situations
 - Overall traffic may slow down during lane changes
 - Lane changes in complex situations can lead to accidents
- Goal
 - Control multiple vehicles at the same time to move a specific vehicle to the target lane!
 - Minimize the overall vehicle speed reduction
 - => Multi-Agent Reinforcement Learning

2019 IEEE ISPACS

Predator-Prey Environment

- Predators are learned to hunt the prey and Prey are leaned to runs away from the predators

2019 IEEE ISPACS

• Zombie Defense Environment

2019 IEEE ISPACS

Multi-Agent Traffic Control Environment

2019 IEEE ISPACS

2019 IEEE ISPACS

Multi-Agent Deep Reinforcement Learning for Cooperative Driving in Crowded Traffic Scenarios

Jongwon Park Hanyang University Seoul, Republic of Korea pjw2091@hanyang.ac.kr Kyushik Min Hanyang University Seoul, Republic of Korea mks0813@hanyang.ac.kr Kunsoo Huh Hanyang University Seoul, Republic of Korea khuh2@hanyang.ac.kr

ISPACS 2019

Beitou, Taipei Dec. 3-6, 2019

Extra Research

Conclusion

- Are you curious about reinforcement learning? Come to RLKorea!
- Unity ML-Agents make it easy to create RL environments!
 - Easy environment creation using Unity
 - Stable communication between Unity environment and Python code
 - Support for creating a variety of RL environments (Multi-Agent, Curriculum,...)
- Perform various studies using ML-Agents
 - Create a variety of game and vehicle environments
 - RL performance verification using ML-Agents

THANK YOU

SOSCON2019

SAMSUNG OPEN SOURCE CONFERENCE 2019